Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 24(4): 407-422, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603526

RESUMO

Recent ground-based observations of Venus have detected a single spectral feature consistent with phosphine (PH3) in the middle atmosphere, a gas which has been suggested as a biosignature on rocky planets. The presence of PH3 in the oxidized atmosphere of Venus has not yet been explained by any abiotic process. However, state-of-the-art experimental and theoretical research published in previous works demonstrated a photochemical origin of another potential biosignature-the hydride methane-from carbon dioxide over acidic mineral surfaces on Mars. The production of methane includes formation of the HC · O radical. Our density functional theory (DFT) calculations predict an energetically plausible reaction network leading to PH3, involving either HC · O or H· radicals. We suggest that, similarly to the photochemical formation of methane over acidic minerals already discussed for Mars, the origin of PH3 in Venus' atmosphere could be explained by radical chemistry starting with the reaction of ·PO with HC·O, the latter being produced by reduction of CO2 over acidic dust in upper atmospheric layers of Venus by ultraviolet radiation. HPO, H2P·O, and H3P·OH have been identified as key intermediate species in our model pathway for phosphine synthesis.


Assuntos
Fosfinas , Vênus , Meio Ambiente Extraterreno , Raios Ultravioleta , Processos Fotoquímicos , Atmosfera , Metano
2.
Micromachines (Basel) ; 14(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36985098

RESUMO

The advent of new nanomaterials has resulted in dramatic developments in the field of energy production and storage. Due to their unique structure and properties, transition metal dichalcogenides (TMDs) are the most promising from the list of materials recently introduced in the field. The amazing progress in the use TMDs for energy storage and production inspired us to review the recent research on TMD-based catalysts and electrode materials. In this report, we examine TMDs in a variety of electrochemical batteries and solar cells with special focus on MoS2 as the most studied and used TMD material.

3.
Astrobiology ; 20(12): 1476-1488, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32955922

RESUMO

Chemical environments of young planets are assumed to be significantly influenced by impacts of bodies lingering after the dissolution of the protoplanetary disk. We explore the chemical consequences of impacts of these bodies under reducing planetary atmospheres dominated by carbon monoxide, methane, and molecular nitrogen. Impacts were simulated by using a terawatt high-power laser system. Our experimental results show that one-pot impact-plasma-initiated synthesis of all the RNA canonical nucleobases and the simplest amino acid glycine is possible in this type of atmosphere in the presence of montmorillonite. This one-pot synthesis begins with de novo formation of hydrogen cyanide (HCN) and proceeds through intermediates such as cyanoacetylene and urea.


Assuntos
Glicina , Cianeto de Hidrogênio , Nucleotídeos , Atmosfera , Meio Ambiente Extraterreno
4.
Nanotechnology ; 31(43): 435401, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-32610307

RESUMO

Today, two-dimensional materials for use in energy devices have attracted the attention of researchers. Molybdenum disulfide is promising as an electrode material with unique physical properties and a high exposed surface area. However, there are still problems that need to be addressed. In this study, we prepared a hybrid containing MoS2, Fe3O4, and reduced graphene oxide (rGO) by a two-step hydrothermal method. This nanocomposite is well structurally and morphologically identified, and its electrochemical performance is then evaluated for use in supercapacitors. According to the galvanostatic charge-discharge results, this nanocomposite shows a good specific capacity, equivalent to 527 F g-1 at 0.5 mA cm-2. The results of the multi-cycle stability test (5000 cycles) indicate a significant stability rate capability, with 93% of the electrode capacity remaining after 5000 cycles. The reason for this could be the synergistic effect between rGO and MoS2 as well as between molybdenum and iron in the faradic reaction in the charge storage process. Fe3O4 and MoS2 provide electroactive sites for the faradic process and electrolyte accessibility and rGO supply conductivity.

5.
Chemistry ; 26(52): 12075-12080, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32293757

RESUMO

Terrestrial volcanism has been one of the dominant geological forces shaping our planet since its earliest existence. Its associated phenomena, like atmospheric lightning and hydrothermal activity, provide a rich energy reservoir for chemical syntheses. Based on our laboratory simulations, we propose that on the early Earth volcanic activity inevitably led to a remarkable production of formic acid through various independent reaction channels. Large-scale availability of atmospheric formic acid supports the idea of the high-temperature accumulation of formamide in this primordial environment.

6.
Sci Rep ; 8(1): 16231, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30385859

RESUMO

It is well known that all biological systems which undergo oxidative metabolism or oxidative stress generate a small amount of light. Since the origin of excited states producing this light is generally accepted to come from chemical reactions, the term endogenous biological chemiluminescence is appropriate. Apart from biomedicine, this phenomenon has potential applications also in plant biology and agriculture like monitoring the germination rate of seeds. While chemiluminescence capability to monitor germination has been measured on multiple agriculturally relevant plants, the standard model plant Arabidopsis thaliana has not been analyzed for this process so far. To fill in this gap, we demonstrate here on A. thaliana that the intensity of endogenous chemiluminescence increases during the germination stage. We showed that the chemiluminescence intensity increases since the second day of germination, but reaches a plateau on the third day, in contrast to other plants germinating from larger seeds studied so far. We also showed that intensity increases after topical application of hydrogen peroxide in a dose-dependent manner. Further, we demonstrated that the entropy of the chemiluminescence time series is similar to random Poisson signals. Our results support a notion that metabolism and oxidative reactions are underlying processes which generate endogenous biological chemiluminescence. Our findings contribute to novel methods for non-invasive and label-free sensing of oxidative processes in plant biology and agriculture.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Germinação , Luminescência , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Arabidopsis/genética , Biomarcadores , Germinação/genética , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Oxirredução/efeitos dos fármacos , Estresse Oxidativo , Sementes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA